
Mississippi River Basin 2011

The Environmental Benefits of the Conservation Reserve Program

<u>Fiscal Year</u>		2007	2008	2009	2010	2011
Land Enrolled	million acres	25.0	23.4	22.7	21.0	20.7
In Buffers	million acres	1.31	1.39	1.32	1.40	1.31
In Wetland	million acres	1.27	1.21	1.22	1.29	1.35
HEL	million acres	18.6	17.3	16.7	14.9	14.6
Reductions (intercepted by buffers or not leaving field)						
Sediment	million tons	175	175	164	159	165
Nitrogen	million lbs	454	430	431	431	446
Phosphorus	million lbs	93	89	89	89	91
Annual Accumulation						
Carbon Sequestered	million metric tons	30	30	29	28	28

- In 2011, CRP grass filters and riparian buffers intercepted 120 million tons of sediment in the Mississippi River Basin, 290 million pounds of nitrogen, 57 million pounds of phosphorus, and other contaminants, before they entered waterways.
- In 2011, grass and tree plantings reduced nitrate loss by 58 million pounds. Nitrate is a form of nitrogen that is biologically available to algae, and excess nitrate contributes to the formation of the Gulf of Mexico hypoxic zone.
- Wetlands restored and constructed by CRP improve water quality by converting nitrate / nitrogen into benign atmospheric nitrogen through denitrification. Iowa's 69 CREP wetland projects reduced nitrate runoff by nearly 700,000 pounds.
- In prime ringed-neck-pheasant habitat, a 4 percent increase in CRP herbaceous vegetation was associated with a 22 percent increase in pheasant counts.
- CRP lands reduce downstream flood damage by helping to reduce peak flows after storm events by holding and slowly releasing the stormwater.

FSA is using CRP enrollment data, the USDA soils and natural resource inventories, and cooperative agreements with Federal, State, and other partners to refine these performance measures and to estimate the benefits from CRP. For more information see http://www.fsa.usda.gov/FSA/webapp?area=home&subject=ecpa&topic=nra